מה למחוגה ולישרים המאונכים?

העמדת אנך

 

שרטטו ישר כלשהו.

 

ציינו עליו שתי נקודות כלשהן. נקרא להן:   A  ,  B   .

מ A  חוּגו קשת במחוג כלשהו.

מ B חוּגו קשת באותו מחוג.

הקשתות תחתכנה בשתי נקודות.

נקרא להן: C    ו  -  D .

העבירו ישר שיחבר את C עם D .

מה קיבלתם?

הישרים AB    ו  - CD  מאונכים זה לזה.

 

למדנו שהמחוגה יכולה לעזור לנו לשרטט ישרים מאונכים זה לזה.

 

שרטטו ישר אחר, קבעו עליו 2 נקודות כלשהן. נסו להעמיד לו אנך בדרך שלמדנו.

אם הצלחתם, נסו להעמיד אנך לעוד 3 ישרים שכל אחד מהם יהיה בכיוון אחר.

בדקו האם תמיד הישרים מאונכים זה לזה.

המחוגה סייעה לנו לבנות ישרים מאונכים זה לזה ללא מדידה.

לבניות מהסוג הזה קוראים: העמדת אנך.

לפעמים נתונה לנו נקודה על הישר ואנחנו מתבקשים להעמיד אנך לישר הנתון בנקודה נתונה על הישר.

קישור לתיאורי בנייה: העמדת אנך לישר נתון בנקודה נתונה על הישר

שרטטו ישר כלשהו ועליו נקודה, שנסמן אותה ב A .

מ A חוּגו קשת כלשהי כך שתחתוך את הישר  בשתי נקודות.

שיימו את הנקודות.

למען התקשורת נשיים את נקודות החיתוך באותיות  C , B .

מ C  חוגו קשת במחוג כלשהו הגדול מ AB .

מ B  חוגו קשת באותו מחוג .

הקשתות תחתכנה בנקודות E   ו  - F .

חברו אתEA    או את FA .

הנקודות  E , F , A  נמצאות על ישר אחד, המאונך לישר שציירנו בתחילה.

אנחנו אומרים:

FE    מאונך ל לישר הנתון בנקודה A  . 

כיצד נחצה קטע ללא מדידה?

חציית קטע

 

הגדרה: קטע הוא חלק מהישר המוגבל בשני צדדיו.

 

נוהגים לקרוא את הקטעים על שמן של הנקודות שבקצותיהם.

הנקודות מסומנות באותיות לטיניות גדולות. A , B , C , D , E , F   וכל אות אחרת שתבחרו.

 

לדוגמא, לקטע הבא נקרא _______________ .

                           שרטטו בעזרת מחוגה וסרגל קטע CB .

מ B   חוגו קשת שרדיוסה יהיה גדול ממחצית LK  .

מ C  חוגו קשת באותו המחוג.

הקשתות נחתכו בנקודות E    ו  - F .

חברו את EF בקו ישר.

EF חתך את BC  בנקודה שנסמן אותה באות X .

הישר EF  חצה את הקטע  BC  בנקודה X .

את שמות הנקודות מסמנים לפי בחירתנו.

 

בדקו אם X מחלק את הקטע לשני חלקים שווים.

מדדו עם סרגל את אורכו של BX .

מדדו גם את אורכו של CX .

אם קיבלתם ש : 

CX   =   BX

משמע, שהנקודה X   חצתה את BC .

 

שרטטו במחברת קטע כלשהו.

שיימו (= תנו לו שם) אותו על ידי אותיות לטיניות גדולות.

חצו אותו באמצעות מחוגה וסרגל . התעלמו מהמספרים שבסרגל.

לאחר שחציתם אותו, בדקו בעזרת המספרים שעל הסרגל אם אכן פעלתם כשורה.

חצו 3 קטעים שונים בגודלם ובכיוונם. בדקו אם חצייתם הצליחה.

 

ציירו קטע כלשהו ונסו לחצותו כשהמחוגים של הקשתות שחגתם מנקודות הקצה של הקטע יהיו קטנים ממחצית הקטע. הצלחתם? נמקו. _________________________ .

מסקנתכם:

______________________________________ .

 

לפעולות שעשינו בעזרת סרגל ללא מִסְפָּרִים ומחוגה, קוראים בניות.

למדנו את הבנייה של : חציית קטע .

נשלב את הבניות ונלמד לבנות אנך אמצעי לקטע נתון.

אנך אמצעי הוא ישר המאונך לקטע באמצעיתו.

שרטטו קטע כלשהו.

שיימו את שתי נקודות הקצה שלו.

מאחת מהן חוגו קשת במחוג כלשהו הגדול ממחצית הקטע. מהנקודה השנייה חוגו קשת באותו מחוג. הקשתות תחתכנה בשתי נקודות.

חברו את שתי נקודות החיתוך. הישר שמחבר את נקודות החיתוך מאונך לישר הראשון ששרטטתם וחוצה אותו, הישר הזה הוא אנך אמצעי.

אַמְּתו את נכונות הבנייה על ידי מדידה.

 

 

כיצד נוריד אנך לישר נתון מנקודה נתונה מחוץ לישר?

הורדת אנך

עד כה למדנו חציית קטע והעמדת אנך. נלמד כיצד בונים הורדת אנך לישר נתון מנקודה נתונה מחוץ לישר.

ישרים משיימים באותיות לטיניות קטנות. למשל,  a , b , c , d , e , f   או בכל אות לטינית קטנה אחרת שנבחר.

 

שרטטו ישר כלשהו m .

סמנו נקודה כלשהי  T  מחוץ לישר  m .

כדי להוריד אנך ל m   מ - T , בצעו את הפעולות הבאות.

חוגו קשת מנקודה T  כך שתחתוך את הישר m  בשתי נקודות.

שימו לב,

הרדיוס של הקשת חייב להיות גדול דיו כדי שהקשת תחתוך את הישר בשתי נקודות.

נקרא לנקודות החיתוך A , B .

מ A חוגו קשת במחוג כלשהו.

מ B חוגו קשת באותו מחוג.

הקשתות ייחתכו בנקודות X , Y .

חברו את XY בקו ישר.

הישר XY מאונך לישר m   .

אפשר להיות יעיל יותר. הציעו דרך לשיפור הבנייה של הורדת אנך אל ישר נתון מנקודה נתונה מחוץ לישר.

לבנייה הזאת קוראים בקיצור : הורדת אנך.

המשך